3D-ANAS v2: Grafting Transformer Module on Automatically Designed ConvNet for Hyperspectral Image Classification

by   Xizhe Xue, et al.

Hyperspectral image (HSI) classification has been a hot topic for decides, as Hyperspectral image has rich spatial and spectral information, providing strong basis for distinguishing different land-cover objects. Benefiting from the development of deep learning technologies, deep learning based HSI classification methods have achieved promising performance. Recently, several neural architecture search (NAS) algorithms are proposed for HSI classification, which further improve the accuracy of HSI classification to a new level. In this paper, we revisit the search space designed in previous HSI classification NAS methods and propose a novel hybrid search space, where 3D convolution, 2D spatial convolution and 2D spectral convolution are employed. Compared search space proposed in previous works, the serach space proposed in this paper is more aligned with characteristic of HSI data that is HSIs have a relatively low spatial resolution and an extremely high spectral resolution. In addition, to further improve the classification accuracy, we attempt to graft the emerging transformer module on the automatically designed ConvNet to adding global information to local region focused features learned by ConvNet. We carry out comparison experiments on three public HSI datasets which have different spectral characteristics to evaluate the proposed method. Experimental results show that the proposed method achieves much better performance than comparison approaches, and both adopting the proposed hybrid search space and grafting transformer module improves classification accuracy. Especially on the most recently captured dataset Houston University, overall accuracy is improved by up to nearly 6 percentage points. Code will be available at: https://github.com/xmm/3D-ANAS-V2.


page 1

page 4

page 7

page 8

page 10

page 11

page 12


3D-ANAS: 3D Asymmetric Neural Architecture Search for Fast Hyperspectral Image Classification

Hyperspectral images involve abundant spectral and spatial information, ...

A2S-NAS: Asymmetric Spectral-Spatial Neural Architecture Search For Hyperspectral Image Classification

Existing deep learning-based hyperspectral image (HSI) classification wo...

GLiT: Neural Architecture Search for Global and Local Image Transformer

We introduce the first Neural Architecture Search (NAS) method to find a...

Object Detection in Hyperspectral Image via Unified Spectral-Spatial Feature Aggregation

Deep learning-based hyperspectral image (HSI) classification and object ...

A Spectral-Spatial-Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification

Deep learning techniques have been widely applied to hyperspectral image...

Rethink DARTS Search Space and Renovate a New Benchmark

DARTS search space (DSS) has become a canonical benchmark for NAS wherea...

Local-to-Global Information Communication for Real-Time Semantic Segmentation Network Search

Neural Architecture Search (NAS) has shown great potentials in automatic...

Please sign up or login with your details

Forgot password? Click here to reset