A Coded Caching Scheme with Linear Sub-packetization and its Application to Multi-Access Coded Caching
This paper addresses the problem of exponentially increasing sub-packetization with the number of users in a centralized coded caching system by introducing a new coded caching scheme inspired by the symmetric neighboring consecutive side information index coding problem. The scheme has a placement policy where the number of sub-packets required grows only linearly with the number of users, with no restriction on file size, and a delivery policy which is instantaneously decodable. Further, an application of the new delivery scheme in a multi-access coded caching set-up is studied and a few results in that direction are presented. In particular, in the multi-access set-up, for cases where optimality rate-memory trade-off characterizations are available, it is shown that the new delivery scheme achieves optimal or near-optimal rates.
READ FULL TEXT