A function space analysis of finite neural networks with insights from sampling theory

04/15/2020
by   Raja Giryes, et al.
0

This work suggests using sampling theory to analyze the function space represented by neural networks. First, it shows, under the assumption of a finite input domain, which is the common case in training neural networks, that the function space generated by multi-layer networks with non-expansive activation functions is smooth. This extends over previous works that show results for the case of infinite width ReLU networks. Then, under the assumption that the input is band-limited, we provide novel error bounds for univariate neural networks. We analyze both deterministic uniform and random sampling showing the advantage of the former.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro