A Game-Theoretic Learning Framework for Multi-Agent Intelligent Wireless Networks

12/04/2018
by   Jinlong Wang, et al.
0

In this article, we introduce a game-theoretic learning framework for the multi-agent wireless network. By combining learning in artificial intelligence (AI) with game theory, several promising properties emerge such as obtaining high payoff in the unknown and dynamic environment, coordinating the actions of agents and making the adversarial decisions with the existence of malicious users. Unfortunately, there is no free lunch. To begin with, we discuss the connections between learning in AI and game theory mainly in three levels, i.e., pattern recognition, prediction and decision making. Then, we discuss the challenges and requirements of the combination for the intelligent wireless network, such as constrained capabilities of agents, incomplete information obtained from the environment and the distributed, dynamically scalable and heterogeneous characteristics of wireless network. To cope with these, we propose a game-theoretic learning framework for the wireless network, including the internal coordination (resource optimization) and external adversarial decision-making (anti-jamming). Based on the framework, we introduce several attractive game-theoretic learning methods combining with the typical applications that we have proposed. What's more, we developed a real-life testbed for the multi-agent anti-jamming problem based on the game-theoretic learning framework. The experiment results verify the effectiveness of the proposed game-theoretic learning method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset