A Lower Bound for the Sample Complexity of Inverse Reinforcement Learning

03/07/2021
by   Abi Komanduru, et al.
0

Inverse reinforcement learning (IRL) is the task of finding a reward function that generates a desired optimal policy for a given Markov Decision Process (MDP). This paper develops an information-theoretic lower bound for the sample complexity of the finite state, finite action IRL problem. A geometric construction of β-strict separable IRL problems using spherical codes is considered. Properties of the ensemble size as well as the Kullback-Leibler divergence between the generated trajectories are derived. The resulting ensemble is then used along with Fano's inequality to derive a sample complexity lower bound of O(n log n), where n is the number of states in the MDP.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro