A Mathematical Foundation for the Spatial Uncertainty of Critical Points in Probabilistic Scalar Fields

by   Dominik Vietinghoff, et al.

Critical points mark locations in the domain where the level-set topology of a scalar function undergoes fundamental changes and thus indicate potentially interesting features in the data. Established methods exist to locate and relate such points in a deterministic setting, but it is less well understood how the concept of critical points can be extended to the analysis of uncertain data. Most methods for this task aim at finding likely locations of critical points or estimate the probability of their occurrence locally but do not indicate if critical points at potentially different locations in different realizations of a stochastic process are manifestations of the same feature, which is required to characterize the spatial uncertainty of critical points. Previous work on relating critical points across different realizations reported challenges for interpreting the resulting spatial distribution of critical points but did not investigate the causes. In this work, we provide a mathematical formulation of the problem of finding critical points with spatial uncertainty and computing their spatial distribution, which leads us to the notion of uncertain critical points. We analyze the theoretical properties of these structures and highlight connections to existing works for special classes of uncertain fields. We derive conditions under which well-interpretable results can be obtained and discuss the implications of those restrictions for the field of visualization. We demonstrate that the discussed limitations are not purely academic but also arise in real-world data.


page 1

page 2

page 3

page 4


Visualizing Confidence Intervals for Critical Point Probabilities in 2D Scalar Field Ensembles

An important task in visualization is the extraction and highlighting of...

Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps

Morse complexes are gradient-based topological descriptors with close co...

Finding and Classifying Critical Points of 2D Vector Fields: A Cell-Oriented Approach Using Group Theory

We present a novel approach to finding critical points in cell-wise bary...

Jacobi Set Driven Search for Flexible Fiber Surface Extraction

Isosurfaces are an important tool for analysis and visualization of univ...

An Interesting Uncertainty-Based Combinatoric Problem in Spare Parts Forecasting: The FRED System

The domain of spare parts forecasting is examined, and is found to prese...

Generalized uncertain theory: concepts and fundamental principles

Although there are many mathematical theories to address uncertain pheno...

Uncertain Spatial Data Management:An Overview

Both the current trends in technology such as smartphones, general mobil...

Please sign up or login with your details

Forgot password? Click here to reset