A new Hodge operator in Discrete Exterior Calculus. Application to fluid mechanics

06/29/2020
by   Rama Ayoub, et al.
0

This article introduces a new and general construction of discrete Hodge operator in the context of Discrete Exterior Calculus (DEC). This discrete Hodge operator enables to circumvent the well-centeredness limitation on the mesh with the popular diagonal Hodge. It allows a dual mesh based on any interior point, such as the incenter or the barycenter. It opens the way towards mesh-optimized discrete Hodge operators. In the particular case of a well-centered triangulation, it reduces to the diagonal Hodge if the dual mesh is circumcentric. Based on an analytical development, this discrete Hodge does not make use of Whitney forms, and is exact on piecewise constant forms, whichever interior point is chosen for the construction of the dual mesh. Numerical tests oriented to the resolution of fluid mechanics problems and thermal transfer are carried out. Convergence on various types of mesh is investigated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset