A new interface capturing method for Allen-Cahn type equations based on a flow dynamic approach in Lagrangian coordinates, I. One-dimensional case
We develop a new Lagrangian approach — flow dynamic approach to effectively capture the interface in the Allen-Cahn type equations. The underlying principle of this approach is the Energetic Variational Approach (EnVarA), motivated by Rayleigh and Onsager <cit.>. Its main advantage, comparing with numerical methods in Eulerian coordinates, is that thin interfaces can be effectively captured with few points in the Lagrangian coordinate. We concentrate in the one-dimensional case and construct numerical schemes for the trajectory equation in Lagrangian coordinate that obey the variational structures, and as a consequence, are energy dissipative. Ample numerical results are provided to show that only a fewer points are enough to resolve very thin interfaces by using our Lagrangian approach.
READ FULL TEXT