A novel Bayesian approach for variable selection in linear regression models

03/13/2019
by   Konstantin Posch, et al.
0

We propose a novel Bayesian approach to the problem of variable selection in multiple linear regression models. In particular, we present a hierarchical setting which allows for direct specification of a-priori beliefs about the number of nonzero regression coefficients as well as a specification of beliefs that given coefficients are nonzero. To guarantee numerical stability, we adopt a g-prior with an additional ridge parameter for the unknown regression coefficients. In order to simulate from the joint posterior distribution an intelligent random walk Metropolis-Hastings algorithm which is able to switch between different models is proposed. Testing our algorithm on real and simulated data illustrates that it performs at least on par and often even better than other well-established methods. Finally, we prove that under some nominal assumptions, the presented approach is consistent in terms of model selection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset