A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability uniform point distribution

by   Tizian Wenzel, et al.

Kernel based methods provide a way to reconstruct potentially high-dimensional functions from meshfree samples, i.e., sampling points and corresponding target values. A crucial ingredient for this to be successful is the distribution of the sampling points. Since the computation of an optimal selection of sampling points may be an infeasible task, one promising option is to use greedy methods. Although these methods may be very effective, depending on the specific greedy criterion the chosen points might quickly lead to instabilities in the computation. To circumvent this problem, we introduce and investigate a new class of stabilized greedy kernel algorithms, which can be used to create a scale of new selection strategies. We analyze these algorithms, and in particular we prove convergence results and quantify in a precise way the distribution of the selected points. These results allow to prove, in the case of certain Sobolev kernels, that the algorithms have optimal stability and optimal convergence rates, including for functions outside the native space of the kernel. The results also apply to the case of the usual P-greedy algorithm, significantly improving state-of-the-art results available in the literature. Illustrative experiments are presented that support the theoretical findings.


page 1

page 2

page 3

page 4


Analysis of target data-dependent greedy kernel algorithms: Convergence rates for f-, f · P- and f/P-greedy

Data-dependent greedy algorithms in kernel spaces are known to provide f...

On the optimality of target-data-dependent kernel greedy interpolation in Sobolev Reproducing Kernel Hilbert Spaces

Kernel interpolation is a versatile tool for the approximation of functi...

Greedy algorithms for learning via exponential-polynomial splines

Kernel-based schemes are state-of-the-art techniques for learning by dat...

Biomechanical surrogate modelling using stabilized vectorial greedy kernel methods

Greedy kernel approximation algorithms are successful techniques for spa...

Sampling based approximation of linear functionals in Reproducing Kernel Hilbert Spaces

In this paper we analyze a greedy procedure to approximate a linear func...

Adaptive meshfree solution of linear partial differential equations with PDE-greedy kernel methods

We consider the meshless solution of PDEs via symmetric kernel collocati...

Greedy Poisson Rejection Sampling

One-shot channel simulation is a fundamental data compression problem co...

Please sign up or login with your details

Forgot password? Click here to reset