A Randomized Block Krylov Method for Tensor Train Approximation

08/03/2023
by   Gaohang Yu, et al.
0

Tensor train decomposition is a powerful tool for dealing with high-dimensional, large-scale tensor data, which is not suffering from the curse of dimensionality. To accelerate the calculation of the auxiliary unfolding matrix, some randomized algorithms have been proposed; however, they are not suitable for noisy data. The randomized block Krylov method is capable of dealing with heavy-tailed noisy data in the low-rank approximation of matrices. In this paper, we present a randomized algorithm for low-rank tensor train approximation of large-scale tensors based on randomized block Krylov subspace iteration and provide theoretical guarantees. Numerical experiments on synthetic and real-world tensor data demonstrate the effectiveness of the proposed algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro