A Recurrent Vision-and-Language BERT for Navigation
Accuracy of many visiolinguistic tasks has benefited significantly from the application of vision-and-language (V L) BERT. However, its application for the task of vision-and-language navigation (VLN) remains limited. One reason for this is the difficulty adapting the BERT architecture to the partially observable Markov decision process present in VLN, requiring history-dependent attention and decision making. In this paper we propose a recurrent BERT model that is time-aware for use in VLN. Specifically, we equip the BERT model with a recurrent function that maintains cross-modal state information for the agent. Through extensive experiments on R2R and REVERIE we demonstrate that our model can replace more complex encoder-decoder models to achieve state-of-the-art results. Moreover, our approach can be generalised to other transformer-based architectures, supports pre-training, and is capable of multi-task learning suggesting the potential to merge a wide range of BERT-like models for other vision and language tasks.
READ FULL TEXT