A simple probabilistic deep generative model for learning generalizable disentangled representations from grouped data
The disentangling problem is to discover multiple complex factors of variations hidden in data. One recent approach is to take a dataset with grouping structure and separately estimate a factor common within a group (content) and a factor specific to each group member (transformation). Notably, this approach can learn to represent a continuous space of contents, which allows for generalization to data with unseen contents. In this study, we aim at cultivating this approach within probabilistic deep generative models. Motivated by technical complication in existing group-based methods, we propose a simpler probabilistic method, called group-contrastive variational autoencoders. Despite its simplicity, our approach achieves reasonable disentanglement with generalizability for three grouped datasets of 3D object images. In comparison with a previous model, although conventional qualitative evaluation shows little difference, our qualitative evaluation using few-shot classification exhibits superior performances for some datasets. We analyze the content representations from different methods and discuss their transformation-dependency and potential performance impacts.
READ FULL TEXT