A Software-Defined Networking Solution for Transparent Session and Service Continuity in Dynamic Multi-Access Edge Computing
Multi-Access Edge Computing (MEC) is one of the prominent 5G concepts that will allow service requirements that were not feasible so far due to the high communications latency and rigidness of cellular networks. The ETSI and the 3GPP are working towards the standardization of MEC applications integration in 5G networks, and how to route user traffic to a Local Area Data Network where local applications are deployed. Nevertheless, there are no practical implementations that facilitate the dynamic relocation of applications from the core to a MEC host, or from a MEC host to another without interruption and transparently to User Equipment (UE). Furthermore, the MEC concept can also be included in a 4G network to provide new advanced services with existing infrastructures. In this paper we propose to use Software Defined Networking (SDN) to create a new instance of the IP anchor point to dynamically redirect the UE traffic to a new physical location (e.g. an edge infrastructure) while maintaining session and service continuity. We also present a novel, completely distributed approach based on SDN to maintain the previous context of the connection in the new instance of the IP anchor point, and we analyze the performance of this mechanism in comparison to other possible alternatives to keep the session state. This approach can be used to implement edge services in a 4G or 5G network.
READ FULL TEXT