A volumetric deep Convolutional Neural Network for simulation of dark matter halo catalogues

05/11/2018
by   Philippe Berger, et al.
2

For modern large-scale structure survey techniques it has become standard practice to test data analysis pipelines on large suites of mock simulations, a task which is currently prohibitively expensive for full N-body simulations. Instead of calculating this costly gravitational evolution, we have trained a three-dimensional deep Convolutional Neural Network (CNN) to identify dark matter protohalos directly from the cosmological initial conditions. Training on halo catalogues from the Peak Patch semi-analytic code, we test various CNN architectures and find they generically achieve a Dice coefficient of 92 only 24 hours of training. We present a simple and fast geometric halo finding algorithm to extract halos from this powerful pixel-wise binary classifier and find that the predicted catalogues match the mass function and power spectra of the ground truth simulations to within 10 long-range tidal forces on an object-by-object basis and find that the network's predictions are consistent with the non-linear ellipsoidal collapse equations used explicitly by the Peak Patch algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro