A weighted POD-reduction approach for parametrized PDE-constrained Optimal Control Problems with random inputs and applications to environmental sciences

by   Giuseppe Carere, et al.

Reduced basis approximations of Optimal Control Problems (OCPs) governed by steady partial differential equations (PDEs) with random parametric inputs are analyzed and constructed. Such approximations are based on a Reduced Order Model, which in this work is constructed using the method of weighted Proper Orthogonal Decomposition. This Reduced Order Model then is used to efficiently compute the reduced basis approximation for any outcome of the random parameter. We demonstrate that such OCPs are well-posed by applying the adjoint approach, which also works in the presence of admissibility constraints and in the case of non linear-quadratic OCPs, and thus is more general than the conventional Lagrangian approach. We also show that a step in the construction of these Reduced Order Models, known as the aggregation step, is not fundamental and can in principle be skipped for noncoercive problems, leading to a cheaper online phase. Numerical applications in three scenarios from environmental science are considered, in which the governing PDE is steady and the control is distributed. Various parameter distributions are taken, and several implementations of the weighted Proper Orthogonal Decomposition are compared by choosing different quadrature rules.


page 9

page 11

page 12

page 16

page 20


A Streamline upwind Petrov-Galerkin Reduced Order Method for Advection-Dominated Partial Differential Equations under Optimal Control

In this paper we will consider distributed Linear-Quadratic Optimal Cont...

Investigation of Proper Orthogonal Decomposition for Echo State Networks

Echo State Networks (ESN) are a type of Recurrent Neural Networks that y...

Error Analysis of a Model Order Reduction Framework for Financial Risk Analysis

A parametric model order reduction (MOR) approach for simulating the hig...

Model Order Reduction by Proper Orthogonal Decomposition

We provide an introduction to POD-MOR with focus on (nonlinear) parametr...

Randomized quasi-optimal local approximation spaces in time

We target time-dependent partial differential equations (PDEs) with coef...

Please sign up or login with your details

Forgot password? Click here to reset