DeepAI AI Chat
Log In Sign Up

Action Detection from a Robot-Car Perspective

07/30/2018
by   Valentina Fontana, et al.
Oxford Brookes University
University of Naples Federico II
0

We present the new Road Event and Activity Detection (READ) dataset, designed and created from an autonomous vehicle perspective to take action detection challenges to autonomous driving. READ will give scholars in computer vision, smart cars and machine learning at large the opportunity to conduct research into exciting new problems such as understanding complex (road) activities, discerning the behaviour of sentient agents, and predicting both the label and the location of future actions and events, with the final goal of supporting autonomous decision making.

READ FULL TEXT

page 1

page 2

page 3

page 4

02/23/2021

ROAD: The ROad event Awareness Dataset for Autonomous Driving

Humans approach driving in a holistic fashion which entails, in particul...
04/16/2021

Spatiotemporal Deformable Models for Long-Term Complex Activity Detection

Long-term complex activity recognition and localisation can be crucial f...
09/28/2022

Advising Autonomous Cars about the Rules of the Road

This paper describes (R)ules (o)f (T)he (R)oad (A)dvisor, an agent that ...
09/28/2022

RADACS: Towards Higher-Order Reasoning using Action Recognition in Autonomous Vehicles

When applied to autonomous vehicle settings, action recognition can help...
05/06/2022

Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation

Simulation is a crucial tool for accelerating the development of autonom...
09/06/2022

Threat Detection In Self-Driving Vehicles Using Computer Vision

On-road obstacle detection is an important field of research that falls ...
10/04/2022

ROAD-R: The Autonomous Driving Dataset with Logical Requirements

Neural networks have proven to be very powerful at computer vision tasks...