Active Privacy-utility Trade-off Against a Hypothesis Testing Adversary

02/16/2021
by   Ecenaz Erdemir, et al.
10

We consider a user releasing her data containing some personal information in return of a service. We model user's personal information as two correlated random variables, one of them, called the secret variable, is to be kept private, while the other, called the useful variable, is to be disclosed for utility. We consider active sequential data release, where at each time step the user chooses from among a finite set of release mechanisms, each revealing some information about the user's personal information, i.e., the true hypotheses, albeit with different statistics. The user manages data release in an online fashion such that maximum amount of information is revealed about the latent useful variable, while the confidence for the sensitive variable is kept below a predefined level. For the utility, we consider both the probability of correct detection of the useful variable and the mutual information (MI) between the useful variable and released data. We formulate both problems as a Markov decision process (MDP), and numerically solve them by advantage actor-critic (A2C) deep reinforcement learning (RL).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset