Adaptive POD-DEIM correction for Turing pattern approximation in reaction-diffusion PDE systems

03/11/2022
by   Alessandro Alla, et al.
0

We investigate a suitable application of Model Order Reduction (MOR) techniques for the numerical approximation of Turing patterns, that are stationary solutions of reaction-diffusion PDE (RD-PDE) systems. We show that solutions of surrogate models built by classical Proper Orthogonal Decomposition (POD) exhibit an unstable error behaviour over the dimension of the reduced space. To overcome this drawback, first of all, we propose a POD-DEIM technique with a correction term that includes missing information in the reduced models. To improve the computational efficiency, we propose an adaptive version of this algorithm in time that accounts for the peculiar dynamics of the RD-PDE in presence of Turing instability. We show the effectiveness of the proposed methods in terms of accuracy and computational cost for a selection of RD systems, i.e. FitzHugh-Nagumo, Schnackenberg and the morphochemical DIB models, with increasing degree of nonlinearity and more structured patterns.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset