Adversarial Defense by Suppressing High-frequency Components

08/19/2019
by   Zhendong Zhang, et al.
0

Recent works show that deep neural networks trained on image classification dataset bias towards textures. Those models are easily fooled by applying small high-frequency perturbations to the clean images. In this paper, we learn robust image classification models by removing high-frequency components. Specifically, we develop a differentiable high-frequency suppression module based on the discrete Fourier transform (DFT). Combining with adversarial training, we won the 5th place in the IJCAI-2019 Alibaba Adversarial AI Challenge. Our code is available online.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro