ALT: An Automatic System for Long Tail Scenario Modeling

by   Ya-Lin Zhang, et al.

In this paper, we consider the problem of long tail scenario modeling with budget limitation, i.e., insufficient human resources for model training stage and limited time and computing resources for model inference stage. This problem is widely encountered in various applications, yet has received deficient attention so far. We present an automatic system named ALT to deal with this problem. Several efforts are taken to improve the algorithms used in our system, such as employing various automatic machine learning related techniques, adopting the meta learning philosophy, and proposing an essential budget-limited neural architecture search method, etc. Moreover, to build the system, many optimizations are performed from a systematic perspective, and essential modules are armed, making the system more feasible and efficient. We perform abundant experiments to validate the effectiveness of our system and demonstrate the usefulness of the critical modules in our system. Moreover, online results are provided, which fully verified the efficacy of our system.


page 1

page 2

page 3

page 4


Across-Task Neural Architecture Search via Meta Learning

Adequate labeled data and expensive compute resources are the prerequisi...

Ranking architectures using meta-learning

Neural architecture search has recently attracted lots of research effor...

Neural Architecture Search over Decentralized Data

To preserve user privacy while enabling mobile intelligence, techniques ...

Learning from Mistakes – A Framework for Neural Architecture Search

Learning from one's mistakes is an effective human learning technique wh...

Pareto-Frontier-aware Neural Architecture Generation for Diverse Budgets

Designing feasible and effective architectures under diverse computation...

An Online Resource Scheduling for Maximizing Quality-of-Experience in Meta Computing

Meta Computing is a new computing paradigm, which aims to solve the prob...

Please sign up or login with your details

Forgot password? Click here to reset