Amplifying state dissimilarity leads to robust and interpretable clustering of scientific data
Existing methods that aim to automatically cluster data into physically meaningful subsets typically require assumptions regarding the number, size, or shape of the coherent subgroups. We present a new method, simultaneous Coherent Structure Coloring (sCSC), which accomplishes the task of unsupervised clustering without a priori guidance regarding the underlying structure of the data. To illustrate the versatility of the method, we apply it to frontier physics problems at vastly different temporal and spatial scales: in a theoretical model of geophysical fluid dynamics, in laboratory measurements of vortex ring formation and entrainment, and in atomistic simulation of the Protein G system. The theoretical flow involves sparse sampling of non-equilibrium dynamics, where this new technique can find and characterize the structures that govern fluid transport using two orders of magnitude less data than required by existing methods. Application of the method to empirical measurements of vortex formation leads to the discovery of a well defined region in which vortex ring entrainment occurs, with potential implications ranging from flow control to cardiovascular diagnostics. Finally, the protein folding example demonstrates a data-rich application governed by equilibrium dynamics, where the technique in this manuscript automatically discovers the hierarchy of distinct processes that govern protein folding and clusters protein configurations accordingly. We anticipate straightforward translation to many other fields where existing analysis tools, such as k-means and traditional hierarchical clustering, require ad hoc assumptions on the data structure or lack the interpretability of the present method. The method is also potentially generalizable to fields where the underlying processes are less accessible, such as genomics and neuroscience.
READ FULL TEXT