An Efficient Finite Element Iterative Method for Solving a Nonuniform Size Modified Poisson-Boltzmann Ion Channel Model

by   Dexuan Xie, et al.

In this paper, a nonuniform size modified Poisson-Boltzmann ion channel (nuSMPBIC) model is presented as a nonlinear system of an electrostatic potential and multiple ionic concentrations. It mixes nonlinear algebraic equations with a Poisson boundary value problem involving Dirichlet-Neumann mixed boundary value conditions and a membrane surface charge density to reflect the effects of ion sizes and membrane charges on electrostatics and ionic concentrations. To overcome the difficulties of strong singularities and exponential nonlinearities, it is split into three submodels with a solution of Model 1 collecting all the singular points and Models 2 and 3 much easier to solve numerically than the original nuSMPBIC model. A damped two-block iterative method is then presented to solve Model 3, along with a novel modified Newton iterative scheme for solving each related nonlinear algebraic system. To this end, an effective nuSMPBIC finite element solver is derived and then implemented as a program package that works for an ion channel protein with a three-dimensional molecular structure and a mixture solution of multiple ionic species. Numerical results for a voltage-dependent anion channel (VDAC) in a mixture of four ionic species demonstrate a fast convergence rate of the damped two-block iterative method, the high performance of the software package, and the importance of considering nonuniform ion sizes. Moreover, the nuSMPBIC model is validated by the anion selectivity property of VDAC.


page 13

page 14

page 17


An inverse averaging finite element method for solving the size-modified Poisson-Nernst-Planck equations in ion channel simulations

In this work, we introduce an inverse averaging finite element method (I...

Efficient Generation of Membrane and Solvent Tetrahedral Meshes for Ion Channel Finite Element Calculation

A finite element solution of an ion channel dielectric continuum model s...

A new iterative method for solving a class of two-by-two block complex linear systems

We present an iterative method for solving the system arisen from finite...

High-productivity, high-performance workflow for virus-scale electrostatic simulations with Bempp-Exafmm

Biomolecular electrostatics is key in protein function and the chemical ...

Fast Newton Iterative Method for Local Steric Poisson–Boltzmann Theories in Biomolecular Solvation

This work proposes a fast iterative method for local steric Poisson–Bolt...

Analysis of a new implicit solver for a semiconductor model

We present and analyze a new iterative solver for implicit discretizatio...

Efficient solution of parameter identification problems with H^1 regularization

We consider the identification of spatially distributed parameters under...

Please sign up or login with your details

Forgot password? Click here to reset