An Empirical Study of the Effects of Spurious Transitions on Abstraction-based Heuristics

by   Mehdi Sadeqi, et al.

The efficient solution of state space search problems is often attempted by guiding search algorithms with heuristics (estimates of the distance from any state to the goal). A popular way for creating heuristic functions is by using an abstract version of the state space. However, the quality of abstraction-based heuristic functions, and thus the speed of search, can suffer from spurious transitions, i.e., state transitions in the abstract state space for which no corresponding transitions in the reachable component of the original state space exist. Our first contribution is a quantitative study demonstrating that the harmful effects of spurious transitions on heuristic functions can be substantial, in terms of both the increase in the number of abstract states and the decrease in the heuristic values, which may slow down search. Our second contribution is an empirical study on the benefits of removing a certain kind of spurious transition, namely those that involve states with a pair of mutually exclusive (mutex) variablevalue assignments. In the context of state space planning, a mutex pair is a pair of variable-value assignments that does not occur in any reachable state. Detecting mutex pairs is a problem that has been addressed frequently in the planning literature. Our study shows that there are cases in which mutex detection helps to eliminate harmful spurious transitions to a large extent and thus to speed up search substantially.


page 6

page 7

page 8


Understanding Sample Generation Strategies for Learning Heuristic Functions in Classical Planning

We study the problem of learning good heuristic functions for classical ...

Higher-Dimensional Potential Heuristics for Optimal Classical Planning

Potential heuristics for state-space search are defined as weighted sums...

Implicit Abstraction Heuristics

State-space search with explicit abstraction heuristics is at the state ...

Extended Breadth-First Search Algorithm

The task of artificial intelligence is to provide representation techniq...

Abstract Interpretation for Generalized Heuristic Search in Model-Based Planning

Domain-general model-based planners often derive their generality by con...

Parameter Space Abstraction and Unfolding Semantics of Discrete Regulatory Networks

The modelling of discrete regulatory networks combines a graph specifyin...

Optimized State Space Grids for Abstractions

The practical impact of abstraction-based controller synthesis methods i...

Please sign up or login with your details

Forgot password? Click here to reset