An End-to-End Differentiable but Explainable Physics Engine for Tensegrity Robots: Modeling and Control

11/10/2020
by   Kun Wang, et al.
21

This work proposes an end-to-end differentiable physics engine for tensegrity robots, which introduces a data-efficient linear contact model for accurately predicting collision responses that arise due to contacting surfaces, and a linear actuator model that can drive these robots by expanding and contracting their flexible cables. To the best of the authors' knowledge, this is the first differentiable physics engine for tensegrity robots that supports cable modeling, contact, and actuation. This engine can be used inside an off-the-shelf, RL-based locomotion controller in order to provide training examples. This paper proposes a progressive training pipeline for the differentiable physics engine that helps avoid local optima during the training phase and reduces data requirements. It demonstrates the data-efficiency benefits of using the differentiable engine for learning locomotion policies for NASA's icosahedron SUPERballBot. In particular, after the engine has been trained with few trajectories to match a ground truth simulated model, then a policy learned on the differentiable engine is shown to be transferable back to the ground-truth model. Training the controller requires orders of magnitude more data than training the differential engine.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset