An introduction to synchronous self-learning Pareto strategy

by   Ahmad Mozaffari, et al.

In last decades optimization and control of complex systems that possessed various conflicted objectives simultaneously attracted an incremental interest of scientists. This is because of the vast applications of these systems in various fields of real life engineering phenomena that are generally multi modal, non convex and multi criterion. Hence, many researchers utilized versatile intelligent models such as Pareto based techniques, game theory (cooperative and non cooperative games), neuro evolutionary systems, fuzzy logic and advanced neural networks for handling these types of problems. In this paper a novel method called Synchronous Self Learning Pareto Strategy Algorithm (SSLPSA) is presented which utilizes Evolutionary Computing (EC), Swarm Intelligence (SI) techniques and adaptive Classical Self Organizing Map (CSOM) simultaneously incorporating with a data shuffling behavior. Evolutionary Algorithms (EA) which attempt to simulate the phenomenon of natural evolution are powerful numerical optimization algorithms that reach an approximate global maximum of a complex multi variable function over a wide search space and swarm base technique can improved the intensity and the robustness in EA. CSOM is a neural network capable of learning and can improve the quality of obtained optimal Pareto front. To prove the efficient performance of proposed algorithm, authors utilized some well known benchmark test functions. Obtained results indicate that the cited method is best suit in the case of vector optimization.


page 1

page 2

page 3

page 4


A swarm optimization algorithm inspired in the behavior of the social-spider

Swarm intelligence is a research field that models the collective behavi...

A natural-inspired optimization machine based on the annual migration of salmons in nature

Bio inspiration is a branch of artificial simulation science that shows ...

Self-Evolutionary Optimization for Pareto Front Learning

Multi-task learning (MTL), which aims to improve performance by learning...

Epistocracy Algorithm: A Novel Hyper-heuristic Optimization Strategy for Solving Complex Optimization Problems

This paper proposes a novel evolutionary algorithm called Epistocracy wh...

Self-adaptive Multi-task Particle Swarm Optimization

Multi-task optimization (MTO) studies how to simultaneously solve multip...

A differential evolution-based optimization tool for interplanetary transfer trajectory design

The extremely sensitive and highly nonlinear search space of interplanet...

Influence of Topological Features on Spatially-Structured Evolutionary Algorithms Dynamics

In the last decades, complex networks theory significantly influenced ot...

Please sign up or login with your details

Forgot password? Click here to reset