An Optimization-Based Sum-of-Squares Approach to Vizing's Conjecture

01/29/2019
by   Elisabeth Gaar, et al.
0

Vizing's conjecture (open since 1968) relates the sizes of dominating sets in two graphs to the size of a dominating set in their Cartesian product graph. In this paper, we formulate Vizing's conjecture itself as a Positivstellensatz existence question. In particular, we encode the conjecture as an ideal/polynomial pair such that the polynomial is nonnegative if and only if the conjecture is true. We demonstrate how to use semidefinite optimization techniques to computationally obtain numeric sum-of-squares certificates, and then show how to transform these numeric certificates into symbolic certificates approving nonnegativity of our polynomial. After outlining the theoretical structure of this computer-based proof of Vizing's conjecture, we present computational and theoretical results. In particular, we present exact low-degree sparse sum-of-squares certificates for particular families of graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset