Application of the interacting particle system method to piecewise deterministic Markov processes used in reliability

05/22/2019
by   H. Chraibi, et al.
0

Variance reduction methods are often needed for the reliability assessment of complex industrial systems, we focus on one variance reduction method in a given context, that is the interacting particle system method (IPS) used on piecewise deterministic Markov processes (PDMP) for reliability assessment . The PDMPs are a very large class of processes which benefit from high modeling capacities, they can model almost any Markovian phenomenon that does not include diffusion. In reliability assessment, the PDMPs modeling industrial systems generally involve low jump rates and jump kernels favoring one safe arrival, we call such model a "concentrated PDMP". Used on such concentrated PDMPs, the IPS is inefficient and does not always provide a variance reduction. Indeed, the efficiency of the IPS method relies on simulating many different trajectories during its propagation steps, but unfortunately concentrated PDMPs are likely to generate the same deterministic trajectories over and over. We propose an adaptation of the IPS method called IPS+M that reduces this phenomenon. The IPS+M consists in modifying the propagation steps of the IPS, by conditioning the propagation to avoid generating the same trajectories multiple times. We prove that, compared to the IPS, the IPS+M method always provides an estimator with a lower variance. We also carry out a quick simulation study on a two-components system that confirms this result.

READ FULL TEXT
research
09/17/2022

Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process

Piecewise deterministic Markov processes (PDMPs) can be used to model co...
research
11/26/2018

Optimal input potential functions in the interacting particle system method

The assessment of the probability of a rare event with a naive Monte-Car...
research
01/29/2019

Nonparametric estimation of jump rates for a specific class of Piecewise Deterministic Markov Processes

In this paper, we consider a piecewise deterministic Markov process (PDM...
research
12/14/2019

Control variates and Rao-Blackwellization for deterministic sweep Markov chains

We study control variate methods for Markov chain Monte Carlo (MCMC) in ...
research
09/06/2023

Multilevel Particle Filters for a Class of Partially Observed Piecewise Deterministic Markov Processes

In this paper we consider the filtering of a class of partially observed...

Please sign up or login with your details

Forgot password? Click here to reset