Automated Feature-Topic Pairing: Aligning Semantic and Embedding Spaces in Spatial Representation Learning

by   Dongjie Wang, et al.

Automated characterization of spatial data is a kind of critical geographical intelligence. As an emerging technique for characterization, Spatial Representation Learning (SRL) uses deep neural networks (DNNs) to learn non-linear embedded features of spatial data for characterization. However, SRL extracts features by internal layers of DNNs, and thus suffers from lacking semantic labels. Texts of spatial entities, on the other hand, provide semantic understanding of latent feature labels, but is insensible to deep SRL models. How can we teach a SRL model to discover appropriate topic labels in texts and pair learned features with the labels? This paper formulates a new problem: feature-topic pairing, and proposes a novel Particle Swarm Optimization (PSO) based deep learning framework. Specifically, we formulate the feature-topic pairing problem into an automated alignment task between 1) a latent embedding feature space and 2) a textual semantic topic space. We decompose the alignment of the two spaces into: 1) point-wise alignment, denoting the correlation between a topic distribution and an embedding vector; 2) pair-wise alignment, denoting the consistency between a feature-feature similarity matrix and a topic-topic similarity matrix. We design a PSO based solver to simultaneously select an optimal set of topics and learn corresponding features based on the selected topics. We develop a closed loop algorithm to iterate between 1) minimizing losses of representation reconstruction and feature-topic alignment and 2) searching the best topics. Finally, we present extensive experiments to demonstrate the enhanced performance of our method.


page 1

page 2

page 3

page 4


Latent Semantic Structure in Malicious Programs

Latent Semantic Analysis is a method of matrix decomposition used for di...

Feature discovery and visualization of robot mission data using convolutional autoencoders and Bayesian nonparametric topic models

The gap between our ability to collect interesting data and our ability ...

Learning Semantic Textual Similarity via Topic-informed Discrete Latent Variables

Recently, discrete latent variable models have received a surge of inter...

Coordinated Topic Modeling

We propose a new problem called coordinated topic modeling that imitates...

Deep Bayes Factor Scoring for Authorship Verification

The PAN 2020 authorship verification (AV) challenge focuses on a cross-t...

Artificial intelligence for topic modelling in Hindu philosophy: mapping themes between the Upanishads and the Bhagavad Gita

A distinct feature of Hindu religious and philosophical text is that the...

Paying down metadata debt: learning the representation of concepts using topic models

We introduce a data management problem called metadata debt, to identify...

Please sign up or login with your details

Forgot password? Click here to reset