Balancing Stability and Plasticity through Advanced Null Space in Continual Learning

07/25/2022
by   Yajing Kong, et al.
0

Continual learning is a learning paradigm that learns tasks sequentially with resources constraints, in which the key challenge is stability-plasticity dilemma, i.e., it is uneasy to simultaneously have the stability to prevent catastrophic forgetting of old tasks and the plasticity to learn new tasks well. In this paper, we propose a new continual learning approach, Advanced Null Space (AdNS), to balance the stability and plasticity without storing any old data of previous tasks. Specifically, to obtain better stability, AdNS makes use of low-rank approximation to obtain a novel null space and projects the gradient onto the null space to prevent the interference on the past tasks. To control the generation of the null space, we introduce a non-uniform constraint strength to further reduce forgetting. Furthermore, we present a simple but effective method, intra-task distillation, to improve the performance of the current task. Finally, we theoretically find that null space plays a key role in plasticity and stability, respectively. Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset