Bayesian Hierarchical Models For Multi-type Survey Data Using Spatially Correlated Covariates Measured With Error

by   Saikat Nandy, et al.

We introduce Bayesian hierarchical models for predicting high-dimensional tabular survey data which can be distributed from one or multiple classes of distributions (e.g., Gaussian, Poisson, Binomial, etc.). We adopt a Bayesian implementation of a Hierarchical Generalized Transformation (HGT) model to deal with the non-conjugacy of non-Gaussian data models when estimated using a Latent Gaussian Process (LGP) model. Survey data are usually prone to a high degree of sampling error, and we use covariates that are prone to measurement error as well as those free of any such error. A classical measurement error component is defined to deal with the sampling error in the covariates. The proposed models can be high-dimensional and we employ the notion of basis function expansions to provide an effective approach to dimension reduction. The HGT component lends flexibility to our model to incorporate multi-type response datasets under a unified latent process model framework. To demonstrate the applicability of our methodology, we provide the results from simulation studies and data applications arising from a dataset consisting of the U.S. Census Bureau's American Community Survey (ACS) 5-year period estimates of the total population count under the poverty threshold and the ACS 5-year period estimates of median housing costs at the county level across multiple states in the USA.


page 15

page 17

page 19

page 21

page 22


Conjugate Modeling Approaches for Small Area Estimation with Heteroscedastic Structure

Small area estimation has become an important tool in official statistic...

Predicting paleoclimate from compositional data using multivariate Gaussian process inverse prediction

Multivariate compositional count data arise in many applications includi...

For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets

Hierarchical Bayesian methods enable information sharing across multiple...

Joint Point and Variance Estimation under a Hierarchical Bayesian model for Survey Count Data

We propose a novel Bayesian framework for the joint modeling of survey p...

A Simple Correction Procedure for High-Dimensional Generalized Linear Models with Measurement Error

We consider high-dimensional generalized linear models when the covariat...

Please sign up or login with your details

Forgot password? Click here to reset