Beyond Pretrained Features: Noisy Image Modeling Provides Adversarial Defense

02/02/2023
by   Zunzhi You, et al.
0

Masked Image Modeling (MIM) has been a prevailing framework for self-supervised visual representation learning. Within the pretraining-finetuning paradigm, the MIM framework trains an encoder by reconstructing masked image patches with the help of a decoder which would be abandoned when the encoder is used for finetuning. Despite its state-of-the-art performance on clean images, MIM models are vulnerable to adversarial attacks, limiting its real-world application, and few studies have focused on this issue. In this paper, we have discovered that noisy image modeling (NIM), a variant of MIM that uses denoising as the pre-text task, provides not only good pretrained visual features, but also effective adversarial defense for downstream models. To achieve a better accuracy-robustness trade-off, we further propose to sample the hyperparameter that controls the reconstruction difficulty from random distributions instead of setting it globally, and fine-tune downstream networks with denoised images. Experimental results demonstrate that our pre-trained denoising autoencoders are effective against different white-box, gray-box, and black-box attacks without being trained with adversarial images, while not harming the clean accuracy of fine-tuned models. Source code and models will be made available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro