Bidding combinatorial games

07/17/2022
by   Prem Kant, et al.
0

Combinatorial Game Theory is a branch of mathematics and theoretical computer science that studies sequential 2-player games with perfect information. Normal play is the convention where a player who cannot move loses. Here, we generalize the classical alternating normal play to infinitely many game families, by means of discrete Richman auctions (Develin et al. 2010, Larsson et al. 2021, Lazarus et al. 1996). We generalize the notion of a perfect play outcome, and find an exact characterization of outcome feasibility. As a main result, we prove existence of a game form for each such outcome class; then we describe their lattice structures. By imposing restrictions to the general families, such as impartial and symmetric termination, we find surprising analogies with alternating play.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset