Butterfly: Robust One-step Approach towards Wildly-unsupervised Domain Adaptation

05/19/2019
by   Feng Liu, et al.
0

Unsupervised domain adaptation (UDA) trains with clean labeled data in source domain and unlabeled data in target domain to classify target-domain data. However, in real-world scenarios, it is hard to acquire fully-clean labeled data in source domain due to the expensive labeling cost. This brings us a new but practical adaptation called wildly-unsupervised domain adaptation (WUDA), which aims to transfer knowledge from noisy labeled data in source domain to unlabeled data in target domain. To tackle the WUDA, we present a robust one-step approach called Butterfly, which trains four networks. Specifically, two networks are jointly trained on noisy labeled data in source domain and pseudo-labeled data in target domain (i.e., data in mixture domain). Meanwhile, the other two networks are trained on pseudo-labeled data in target domain. By using dual-checking principle, Butterfly can obtain high-quality target-specific representations. We conduct experiments to demonstrate that Butterfly significantly outperforms other baselines on simulated and real-world WUDA tasks in most cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset