CalciumGAN: A Generative Adversarial Network Model for Synthesising Realistic Calcium Imaging Data of Neuronal Populations

by   Bryan M. Li, et al.

Calcium imaging has become a powerful and popular technique to monitor the activity of large populations of neurons in vivo. However, for ethical considerations and despite recent technical developments, recordings are still constrained to a limited number of trials and animals. This limits the amount of data available from individual experiments and hinders the development of analysis techniques and models for more realistic size of neuronal populations. The ability to artificially synthesize realistic neuronal calcium signals could greatly alleviate this problem by scaling up the number of trials. Here we propose a Generative Adversarial Network (GAN) model to generate realistic calcium signals as seen in neuronal somata with calcium imaging. To this end, we adapt the WaveGAN architecture and train it with the Wasserstein distance. We test the model on artificial data with known ground-truth and show that the distribution of the generated signals closely resembles the underlying data distribution. Then, we train the model on real calcium signals recorded from the primary visual cortex of behaving mice and confirm that the deconvolved spike trains match the statistics of the recorded data. Together, these results demonstrate that our model can successfully generate realistic calcium imaging data, thereby providing the means to augment existing datasets of neuronal activity for enhanced data exploration and modeling.


page 8

page 14


Synthesizing realistic neural population activity patterns using Generative Adversarial Networks

The ability to synthesize realistic patterns of neural activity is cruci...

Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks

Understanding how activity in neural circuits reshapes following task le...

Synthetic Dynamic PMU Data Generation: A Generative Adversarial Network Approach

This paper concerns with the production of synthetic phasor measurement ...

Modeling EEG data distribution with a Wasserstein Generative Adversarial Network to predict RSVP Events

Electroencephalography (EEG) data are difficult to obtain due to complex...

A zero-inflated gamma model for deconvolved calcium imaging traces

Calcium imaging is a critical tool for measuring the activity of large n...

Fitting summary statistics of neural data with a differentiable spiking network simulator

Fitting network models to neural activity is becoming an important tool ...

A multiscale and multicriteria Generative Adversarial Network to synthesize 1-dimensional turbulent fields

This article introduces a new Neural Network stochastic model to generat...

Please sign up or login with your details

Forgot password? Click here to reset