Calibrating the scan statistic: finite sample performance vs. asymptotics

by   Guenther Walther, et al.

We consider the problem of detecting an elevated mean on an interval with unknown location and length in the univariate Gaussian sequence model. Recent results have shown that using scale-dependent critical values for the scan statistic allows to attain asymptotically optimal detection simultaneously for all signal lengths, thereby improving on the traditional scan, but this procedure has been criticized for losing too much power for short signals. We explain this discrepancy by showing that these asymptotic optimality results will necessarily be too imprecise to discern the performance of scan statistics in a practically relevant way, even in a large sample context. Instead, we propose to assess the performance with a new finite sample criterion. We then present three calibrations for scan statistics that perform well across a range of relevant signal lengths: The first calibration uses a particular adjustment to the critical values and is therefore tailored to the Gaussian case. The second calibration uses a scale-dependent adjustment to the significance levels and is therefore applicable to arbitrary known null distributions. The third calibration restricts the scan to a particular sparse subset of the scan windows and then applies a weighted Bonferroni adjustment to the corresponding test statistics. This calibration is also applicable to arbitrary null distributions and in addition is very simple to implement.


page 1

page 2

page 3

page 4


Calibrating the scan statistic with size-dependent critical values: heuristics, methodology and computation

It is known that the scan statistic with variable window size favors the...

Detection of Sparse Mixtures: Higher Criticism and Scan Statistic

We consider the problem of detecting a sparse mixture as studied by Ings...

On the Asymptotic Distribution of the Scan Statistic for Point Clouds

We derive the large-sample distribution of several variants of the scan ...

Learning Patterns for Detection with Multiscale Scan Statistics

This paper addresses detecting anomalous patterns in images, time-series...

U-statistic based on overlapping sample spacings

For testing goodness of fit, we consider a class of U-statistics of over...

Circularly Symmetric Tests of Goodness-of-Fit

It is realized that existing powerful tests of goodness-of-fit are all b...

Data-driven stabilizations of goodness-of-fit tests

Exact null distributions of goodness-of-fit test statistics are generall...

Please sign up or login with your details

Forgot password? Click here to reset