CAPHAR: context-aware personalized human activity recognition using associative learning in smart environments
The existing action recognition systems mainly focus on generalized methods to categorize human actions. However, the generalized systems cannot attain the same level of recognition performance for new users mainly due to the high variance in terms of human behavior and the way of performing actions, i.e. activity handling. The use of personalized models based on similarity was introduced to overcome the activity handling problem, but the improvement was found to be limited as the similarity was based on physiognomies rather than the behavior. Moreover, human interaction with contextual information has not been studied extensively in the domain of action recognition. Such interactions can provide an edge for both recognizing high-level activities and improving the personalization effect. In this paper, we propose the context-aware personalized human activity recognition (CAPHAR) framework which computes the class association rules between low-level actions/sensor activations and the contextual information to recognize high-level activities. The personalization in CAPHAR leverages the individual behavior process using a similarity metric to reduce the effect of the activity handling problem. The experimental results on the “daily lifelog” dataset show that CAPHAR can achieve at most 23.73% better accuracy for new users in comparison to the existing classification methods.
READ FULL TEXT