Challenges of Convex Quadratic Bi-objective Benchmark Problems

10/23/2018
by   Tobias Glasmachers, et al.
0

Convex quadratic objective functions are an important base case in state-of-the-art benchmark collections for single-objective optimization on continuous domains. Although often considered rather simple, they represent the highly relevant challenges of non-separability and ill-conditioning. In the multi-objective case, quadratic benchmark problems are under-represented. In this paper we analyze the specific challenges that can be posed by quadratic functions in the bi-objective case. Our construction yields a full factorial design of 54 different problem classes. We perform experiments with well-established algorithms to demonstrate the insights that can be supported by this function class. We find huge performance differences, which can be clearly attributed to two root causes: non-separability and alignment of the Pareto set with the coordinate system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro