CIT-EmotionNet: CNN Interactive Transformer Network for EEG Emotion Recognition

05/07/2023
by   Wei Lu, et al.
3

Emotion recognition using Electroencephalogram (EEG) signals has emerged as a significant research challenge in affective computing and intelligent interaction. However, effectively combining global and local features of EEG signals to improve performance in emotion recognition is still a difficult task. In this study, we propose a novel CNN Interactive Transformer Network for EEG Emotion Recognition, known as CIT-EmotionNet, which efficiently integrates global and local features of EEG signals. Initially, we convert raw EEG signals into spatial-frequency representations, which serve as inputs. Then, we integrate Convolutional Neural Network (CNN) and Transformer within a single framework in a parallel manner. Finally, we design a CNN interactive Transformer module, which facilitates the interaction and fusion of local and global features, thereby enhancing the model's ability to extract both types of features from EEG spatial-frequency representations. The proposed CIT-EmotionNet outperforms state-of-the-art methods, achieving an average recognition accuracy of 98.57% and 92.09% on two publicly available datasets, SEED and SEED-IV, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset