Coded matrix computation with gradient coding
Polynomial based approaches, such as the Mat-Dot and entangled polynomial codes (EPC) have been used extensively within coded matrix computations to obtain schemes with good recovery thresholds. However, these schemes are well-recognized to suffer from poor numerical stability in decoding. Moreover, the encoding process in these schemes involves linearly combining a large number of input submatrices, i.e., the encoding weight is high. For the practically relevant case of sparse input matrices, this can have the undesirable effect of significantly increasing the worker node computation time. In this work, we propose a generalization of the EPC scheme by combining the idea of gradient coding along with the basic EPC encoding. Our technique allows us to reduce the weight of the encoding and arrive at schemes that exhibit much better numerical stability; this is achieved at the expense of a worse threshold. By appropriately setting parameters in our scheme, we recover several well-known schemes in the literature. Simulation results show that our scheme provides excellent numerical stability and fast computation speed (for sparse input matrices) as compared to EPC and Mat-Dot codes.
READ FULL TEXT