Comparison of object detection methods for crop damage assessment using deep learning

by   Ali HamidiSepehr, et al.

Severe weather events can cause large financial losses to farmers. Detailed information on the location and severity of damage will assist farmers, insurance companies, and disaster response agencies in making wise post-damage decisions. The goal of this study was a proof-of-concept to detect damaged crop areas from aerial imagery using computer vision and deep learning techniques. A specific objective was to compare existing object detection algorithms to determine which was best suited for crop damage detection. Two modes of crop damage common in maize (corn) production were simulated: stalk lodging at the lowest ear and stalk lodging at ground level. Simulated damage was used to create a training and analysis data set. An unmanned aerial system (UAS) equipped with a RGB camera was used for image acquisition. Three popular object detectors (Faster R-CNN, YOLOv2, and RetinaNet) were assessed for their ability to detect damaged regions in a field. Average precision was used to compare object detectors. YOLOv2 and RetinaNet were able to detect crop damage across multiple late-season growth stages. Faster R-CNN was not successful as the other two advanced detectors. Detecting crop damage at later growth stages was more difficult for all tested object detectors. Weed pressure in simulated damage plots and increased target density added additional complexity.


page 3

page 8

page 9

page 11

page 17

page 19


Deep object detection for waterbird monitoring using aerial imagery

Monitoring of colonial waterbird nesting islands is essential to trackin...

Damage Estimation and Localization from Sparse Aerial Imagery

Aerial images provide important situational awareness for responding to ...

Nazr-CNN: Fine-Grained Classification of UAV Imagery for Damage Assessment

We propose Nazr-CNN1, a deep learning pipeline for object detection and ...

Analysis and Adaptation of YOLOv4 for Object Detection in Aerial Images

The recent and rapid growth in Unmanned Aerial Vehicles (UAVs) deploymen...

Engineering deep learning methods on automatic detection of damage in infrastructure due to extreme events

This paper presents a few comprehensive experimental studies for automat...

Image-Based Fire Detection in Industrial Environments with YOLOv4

Fires have destructive power when they break out and affect their surrou...

Automated Quality Control of Vacuum Insulated Glazing by Convolutional Neural Network Image Classification

Vacuum Insulated Glazing (VIG) is a highly thermally insulating window t...

Please sign up or login with your details

Forgot password? Click here to reset