Composition operators on reproducing kernel Hilbert spaces with analytic positive definite functions

11/27/2019
by   Masahiro Ikeda, et al.
Tokyo Metropolitan University
RIKEN
0

Composition operators have been extensively studied in complex analysis, and recently, they have been utilized in engineering and machine learning. Here, we focus on composition operators associated with maps in Euclidean spaces that are on reproducing kernel Hilbert spaces with respect to analytic positive definite functions, and prove the maps are affine if the composition operators are bounded. Our result covers composition operators on Paley-Wiener spaces and reproducing kernel spaces with respect to the Gaussian kernel on R^d, widely used in the context of engineering.

READ FULL TEXT

page 1

page 2

page 3

page 4

02/21/2023

The Gaussian kernel on the circle and spaces that admit isometric embeddings of the circle

On Euclidean spaces, the Gaussian kernel is one of the most widely used ...
05/01/2023

On the stability test for reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces (RKHSs) are special Hilbert spaces whe...
05/31/2021

Anti-Koopmanism

This article addresses several longstanding misconceptions concerning Ko...
07/24/2018

Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert spaces (RKHSs) play an important role in many...
10/23/2012

Further properties of Gaussian Reproducing Kernel Hilbert Spaces

We generalize the orthonormal basis for the Gaussian RKHS described in M...
04/19/2021

Robust Uncertainty Bounds in Reproducing Kernel Hilbert Spaces: A Convex Optimization Approach

Let a labeled dataset be given with scattered samples and consider the h...
05/26/2022

Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces

Optimal experimental design seeks to determine the most informative allo...

Please sign up or login with your details

Forgot password? Click here to reset