Computational Complexity of Covering Disconnected Multigraphs

by   Jan Bok, et al.

The notion of graph covers is a discretization of covering spaces introduced and deeply studied in topology. In discrete mathematics and theoretical computer science, they have attained a lot of attention from both the structural and complexity perspectives. Nonetheless, disconnected graphs were usually omitted from the considerations with the explanation that it is sufficient to understand coverings of the connected components of the target graph by components of the source one. However, different (but equivalent) versions of the definition of covers of connected graphs generalize to non-equivalent definitions for disconnected graphs. The aim of this paper is to summarize this issue and to compare three different approaches to covers of disconnected graphs: 1) locally bijective homomorphisms, 2) globally surjective locally bijective homomorphisms (which we call surjective covers), and 3) locally bijective homomorphisms which cover every vertex the same number of times (which we call equitable covers). The standpoint of our comparison is the complexity of deciding if an input graph covers a fixed target graph. We show that both surjective and equitable covers satisfy what certainly is a natural and welcome property: covering a disconnected graph is polynomial-time decidable if such it is for every connected component of the graph, and it is NP-complete if it is NP-complete for at least one of its components. We further argue that the third variant, equitable covers, is the most natural one, namely when considering covers of colored graphs. Moreover, the complexity of surjective and equitable covers differ from the fixed parameter complexity point of view. In line with the current trends in topological graph theory, as well as its applications in mathematical physics, we consider graphs in a very general sense[...]


page 1

page 2

page 3

page 4


Computational Complexity of Covering Two-vertex Multigraphs with Semi-edges

We initiate the study of computational complexity of graph coverings, ak...

List covering of regular multigraphs

A graph covering projection, also known as a locally bijective homomorph...

Covering with Clubs: Complexity and Approximability

Finding cohesive subgraphs in a network is a well-known problem in graph...

Parameterized Complexity of Locally Minimal Defensive Alliances

The Defensive Alliance problem has been studied extensively during the l...

Minimum Connected Transversals in Graphs: New Hardness Results and Tractable Cases Using the Price of Connectivity

We perform a systematic study in the computational complexity of the con...

Complexity of locally-injective homomorphisms to tournaments

For oriented graphs G and H, a homomorphism f: G → H is locally-injectiv...

Translations on graphs with neighborhood preservation

In the field of graph signal processing, defining translation operators ...

Please sign up or login with your details

Forgot password? Click here to reset