Convergence of diffusions and their discretizations: from continuous to discrete processes and back

04/22/2019
by   De Bortoli Valentin, et al.
0

In this paper, we establish new quantitative convergence bounds for a class of functional autoregressive models in weighted total variation metrics. To derive this result, we show that under mild assumptions explicit minorization and Foster-Lyapunov drift conditions hold. Our bounds are then obtained adapting classical results from Markov chain theory. To illustrate our results we study the geometric ergodicity of Euler-Maruyama discretizations of diffusion with covariance matrix identity. Second, we provide a new approach to establish quantitative convergence of these diffusion processes by applying our conclusions in the discrete-time setting to a well-suited sequence of discretizations whose associated stepsizes decrease towards zero.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro