Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems

08/31/2019
by   Aretha L. Teckentrup, et al.
0

This work is concerned with the convergence of Gaussian process regression. A particular focus is on hierarchical Gaussian process regression, where hyper-parameters appearing in the mean and covariance structure of the Gaussian process emulator are a-priori unknown, and are learnt from the data, along with the posterior mean and covariance. We work in the framework of empirical Bayes, where a point estimate of the hyper-parameters is computed, using the data, and then used within the standard Gaussian process prior to posterior update. We provide a convergence analysis that (i) holds for any continuous function f to be emulated; and (ii) shows that convergence of Gaussian process regression is unaffected by the additional learning of hyper-parameters from data, and is guaranteed in a wide range of scenarios. As the primary motivation for the work is the use of Gaussian process regression to approximate the data likelihood in Bayesian inverse problems, we provide a bound on the error introduced in the Bayesian posterior distribution in this context.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro