Convergence Rates of Empirical Bayes Posterior Distributions: A Variational Perspective

09/08/2020
by   Fengshuo Zhang, et al.
13

We study the convergence rates of empirical Bayes posterior distributions for nonparametric and high-dimensional inference. We show that as long as the hyperparameter set is discrete, the empirical Bayes posterior distribution induced by the maximum marginal likelihood estimator can be regarded as a variational approximation to a hierarchical Bayes posterior distribution. This connection between empirical Bayes and variational Bayes allows us to leverage the recent results in the variational Bayes literature, and directly obtains the convergence rates of empirical Bayes posterior distributions from a variational perspective. For a more general hyperparameter set that is not necessarily discrete, we introduce a new technique called "prior decomposition" to deal with prior distributions that can be written as convex combinations of probability measures whose supports are low-dimensional subspaces. This leads to generalized versions of the classical "prior mass and testing" conditions for the convergence rates of empirical Bayes. Our theory is applied to a number of statistical estimation problems including nonparametric density estimation and sparse linear regression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset