Cops and Robbers on Multi-Layer Graphs

03/07/2023
by   Jessica Enright, et al.
0

We generalise the popular cops and robbers game to multi-layer graphs, where each cop and the robber are restricted to a single layer (or set of edges). We show that initial intuition about the best way to allocate cops to layers is not always correct, and prove that the multi-layer cop number is neither bounded from above nor below by any function of the cop numbers of the individual layers. We determine that it is NP-hard to decide if k cops are sufficient to catch the robber, even if all cop layers are trees. However, we give a polynomial time algorithm to determine if k cops can win when the robber layer is a tree. Additionally, we investigate a question of worst-case division of a simple graph into layers: given a simple graph G, what is the maximum number of cops required to catch a robber over all multi-layer graphs where each edge of G is in at least one layer and all layers are connected? For cliques, suitably dense random graphs, and graphs of bounded treewidth, we determine this parameter up to multiplicative constants. Lastly we consider a multi-layer variant of Meyniel's Conjecture, and show the existence of an infinite family of graphs whose multi-layer cop number is bounded from below by a constant times n / log n, where n is the number of vertices in the graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro