Critical factorisation in square-free words

07/20/2021
by   Tero Harju, et al.
0

A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤ |w|-5 where |w| denotes the length of w. Moreover, the bound |w|-5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|/4 critical points, and there is a sequence of these words closing to this bound.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro