Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization

12/09/2022
by   Xufeng Cai, et al.
0

Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t. the Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We further prove the faster, linear convergence of our methods when a Polyak-Łojasiewicz (PŁ) condition holds for the objective function. To the best of our knowledge, our work is the first to provide variance-reduced convergence guarantees for a cyclic block coordinate method. Our experimental results demonstrate the efficacy of the proposed variance-reduced cyclic scheme in training deep neural nets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro