Dark Spot Detection from SAR Images Based on Superpixel Deeper Graph Convolutional Network
Synthetic Aperture Radar (SAR) is the main instrument utilized for the detection of oil slicks on the ocean surface. In SAR images, some areas affected by ocean phenomena, such as rain cells, upwellings, and internal waves, or discharge from oil spills appear as dark spots on images. Dark spot detection is the first step in the detection of oil spills, which then become oil slick candidates. The accuracy of dark spot segmentation ultimately affects the accuracy of oil slick identification. Although some advanced deep learning methods that use pixels as processing units perform well in remote sensing image semantic segmentation, detecting some dark spots with weak boundaries from noisy SAR images remains a huge challenge. We propose a dark spot detection method based on superpixels deeper graph convolutional networks (SGDCN) in this paper, which takes the superpixels as the processing units and extracts features for each superpixel. The features calculated from superpixel regions are more robust than those from fixed pixel neighborhoods. To reduce the difficulty of learning tasks, we discard irrelevant features and obtain an optimal subset of features. After superpixel segmentation, the images are transformed into graphs with superpixels as nodes, which are fed into the deeper graph convolutional neural network for node classification. This graph neural network uses a differentiable aggregation function to aggregate the features of nodes and neighbors to form more advanced features. It is the first time using it for dark spot detection. To validate our method, we mark all dark spots on six SAR images covering the Baltic Sea and construct a dark spots detection dataset, which has been made publicly available (https://drive.google.com/drive/folders/12UavrntkDSPrItISQ8iGefXn2gIZHxJ6?usp=sharing). The experimental results demonstrate that our proposed SGDCN is robust and effective.
READ FULL TEXT